A Hybrid Method for Forecasting Stock Market Trend Using Soft-Thresholding De-noise Model and SVM
نویسندگان
چکیده
Stock market time series are inherently noisy. Although support vector machine has the noise-tolerant property, the noised data still affect the accuracy of classification. Compared with other studies only classify the movements of stock market into up-trend and down-trend which does not concern the noised data, this study uses wavelet soft-threshold de-noising model to classify the noised data into stochastic trend. In the experiment, we remove the stochastic trend data from the SSE Composite Index and get de-noised training data for SVM. Then we use the de-noised data to train SVM and to forecast the testing data. The hit ratio is 60.12%. Comparing with 54.25% hit ratio that is forecasted by noisy training data SVM, we enhance the forecasting performance.
منابع مشابه
An Improved Hybrid Model with Automated Lag Selection to Forecast Stock Market
Objective: In general, financial time series such as stock indexes have nonlinear, mutable and noisy behavior. Structural and statistical models and machine learning-based models are often unable to accurately predict series with such a behavior. Accordingly, the aim of the present study is to present a new hybrid model using the advantages of the GMDH method and Non-dominated Sorting Genetic A...
متن کاملForecasting Stock Price using Hybrid Model based on Wavelet Transform in Tehran and New York Stock Market
Forecasting financial markets is an important issue in finance area and research studies. On one hand, the importance of prediction, and on the other hand, its complexity, have led to huge number of researches which have proposed many forecasting methods in this area. In this study, we propose a hybrid model including Wavelet Transform, ARMA-GARCH and Artificial Neural Network (ANN) for single-...
متن کاملHybrid Intelligent Systems for Stock Market Analysis
The use of intelligent systems for stock market predictions has been widely established. This paper deals with the application of hybridized soft computing techniques for automated stock market forecasting and trend analysis. We make use of a neural network for one day ahead stock forecasting and a neuro-fuzzy system for analyzing the trend of the predicted stock values. To demonstrate the prop...
متن کاملForecasting Stock Market Using Wavelet Transforms and Neural Networks and ARIMA (Case study of price index of Tehran Stock Exchange)
The goal of this research is to predict total stock market index of Tehran Stock Exchange, using the compound method of ARIMA and neural network in order for the active participations of finance market as well as macro decision makers to be able to predict trend of the market. First, the series of price index was decomposed by wavelet transform, then the smooth's series predicted by using...
متن کاملForecasting the Tehran Stock market by Machine Learning Methods using a New Loss Function
Stock market forecasting has attracted so many researchers and investors that many studies have been done in this field. These studies have led to the development of many predictive methods, the most widely used of which are machine learning-based methods. In machine learning-based methods, loss function has a key role in determining the model weights. In this study a new loss function is ...
متن کامل